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Abétract

‘We consider even dimensional submanifolds of spheres with non nega-
tive curvature operator satisfying a certain restriction on their Ricci cur-
vature defined by T. Vlachos. They are homeomorphic to a sphere, a
product of two spheres, or the complex projective space of dimension 2.

1 Introduction

Relations between curvature and topology of Riemannian manifolds have been
under investigation for many years. After the beautiful theorem of Myers relat-
ing the Ricci curvature of a complete n-dimensional Riemannian manifold M
with compactness and finiteness of the fundamental group, a number of versions
of the sphere theorem have appeared in the literature.

Much of work has been done recently concerning the topology of a subman-
ifold M of the unit sphere with positive Ricci curvature.

Extending an idea of Synge, Lawson and Simons related the topology of a
compact Riemannian manifold M™ isometrically immersed into a space form
F™*P(c) of constant non-negative sectional curvature with stable currents ([9]).
Around the same time Gallot and Meyer ([5]) extending a well known result-
of De Rham which permits the decomposition of a complete, connected, sim-
ply connected Riemannian manifold with non-negative curvature operator into
product of irreducible factors also related the topology with curvature. Fol-
lowing Lawson and Simons, Leung ([10]) considered minimal submanifolds of
codimension ! in the unit sphere S™*. Using a similar method as of Leung,
Shichama and Xu ( [11]) extended his result "improving” his bound. Under the
same pattern Hasanis and Vlachos ([7]) proved the analogue theorem of Leung
for odd dimensional submanifolds using a bound of the Ricci curvature.

Theorem 1 (Hasanis and Vlachos) Let M be an odd n-dimensional com-
pact minimal submanifold of the unit sphere S™+!. Assume that the Ricci cur-
vature satisfies Ric > 1(55)_ Then i) if n > 3, M is homeomorphic to a sphere;
it) if n = 3, then M 1is topologically a space form of positive sectional curvature.
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be non-zero in at least three different degrees. Thus M = M; x Ms. Because of
the restrictions on M, the fact that H*(M,Z) = H>*™ {(M,Z) = 0 for i # m
and the Universal Coefficient theorem, we conclude that H*(M;, Z) = H*(S™,Z)
for all 7. It follows that M; = S™. Qur theorem follows.

Remark 10 The case [ = 1 has been studied by Baldin and Mercuri in [1]
without restriction on the Ricci curvature.
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